f08 — Least-squares and Eigenvalue Problems (LAPACK) f08aec

NAG C Library Function Document

nag dgeqrf (f08aec)

1 Purpose

nag_dgeqrf (f08aec) computes the QR factorization of a real m by n matrix.

2 Specification

#include <nag.h>
#include <nagf08.h>

void nag_dgeqrf (Nag_OrderType order, Integer m, Integer n, double al],
Integer pda, double tau[], NagError *fail)

3 Description

nag_dgeqrf (f08aec) forms the QR factorization of an arbitrary rectangular real m by n matrix. No pivoting

is performed.
R

where R is an n by n upper triangular matrix and Q is an m by m orthogonal matrix. It is sometimes more
convenient to write the factorization as
R
=0 0)(7).

If m > n, the factorization is given by:

which reduces to
A= QO|R,
where Q, consists of the first n columns of O, and O, the remaining m — n columns.
If m < n, R is trapezoidal, and the factorization can be written
A=0(Ry Ry),
where R; is upper triangular and R, is rectangular.

The matrix Q is not formed explicitly but is represented as a product of min(m,n) elementary reflectors
(see the fO8 Chapter Introduction for details). Functions are provided to work with Q in this representation
(see Section).

Note also that for any k£ < n, the information returned in the first £ columns of the array a represents a OR
factorization of the first £ columns of the original matrix A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Arguments

1: order — Nag OrderType Input

On entry: the order argument specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by

[NP3660/8] f08aec. 1

f08aec NAG C Library Manual

order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this argument.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: m — Integer Input
On entry: m, the number of rows of the matrix 4.

Constraint: m > 0.

3: n — Integer Input
On entry: n, the number of columns of the matrix 4.

Constraint: n > 0.

4: a[dim] — double Input/Output
Note: the dimension, dim, of the array a must be at least

max(1,pda x n) when order = Nag_ColMajor;
max(1,pda x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i,/)th element of the matrix A is stored in a[(j — 1) x pda +i — 1].
If order = Nag_RowMajor, the (i,j)th element of the matrix 4 is stored in a[(i — 1) x pda +; — 1].
On entry: the m by n matrix A.

On exit: if m > n, the elements below the diagonal are overwritten by details of the orthogonal
matrix Q and the upper triangle is overwritten by the corresponding elements of the n by n upper
triangular matrix R.

If m < n, the strictly lower triangular part is overwritten by details of the orthogonal matrix Q and
the remaining elements are overwritten by the corresponding elements of the m by n upper
trapezoidal matrix R.

5: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor, pda > max(1, m);
if order = Nag_RowMajor, pda > max(1,n).

6: tau[dim] — double Output
Note: the dimension, dim, of the array tau must be at least max (1, min(m,n)).

On exit: further details of the orthogonal matrix Q.

7: fail — NagError * Input/Output
The NAG error argument (see Section 2.6 of the Essential Introduction).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument (value) had an illegal value.

f08aec.2 [NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08aec

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.
NE_INT 2

On entry, pda = (value), m = (value).
Constraint: pda > max(1, m).

On entry, pda = (value), n = (value).
Constraint: pda > max(1,n).
NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed factorization is the exact factorization of a nearby matrix (4 + E), where
1E]l, = O(e) |4l

and € is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately §n2(3m —n) if m>n or %m2(3n —m) if

m < n.

To form the orthogonal matrix Q this function may be followed by a call to nag_dorgqr (f08afc):
nag_dorgqr (order,m,m,MIN(m,n), &a,pda,tau,&fail)

but note that the second dimension of the array a must be at least m, which may be larger than was
required by nag_dgeqrf (f08aec).

When m > n, it is often only the first » columns of Q that are required, and they may be formed by the
call:

nag_dorgqr (order,m,n,n,&a,pda,tau,&fail)

To apply QO to an arbitrary real rectangular matrix C, this function may be followed by a call to
nag_dormgr (f08agc). For example,

nag_dormgr (order,Nag_LeftSide,Nag_Trans,m,p,MIN(m,n),&a,pda,tau,
+ &c,pdc,&fail)

forms C = QTC, where C is m by p.
To compute a QR factorization with column pivoting, use nag_dgeqpf (fO8bec).
The complex analogue of this function is nag_zgeqrf (f08asc).

9 Example
To solve the linear least-squares problems

minimize ||4x; — b;||,, i=1,2

[NP3660/8] f08aec.3

f08aec

where b, and b, are the columns of the matrix B,

-0.57 -1.28 —-0.39 0.25
—1.93 1.08 —-031 -2.14
230 024 040 -0.35
—-1.93 0.64 —0.66 0.08
0.15 030 0.15 -2.13
—0.02 1.03 —-1.43 0.50

A=

9.1 Program Text

/* nag_dgeqrf (f08aec) Example Program.

*

* Copyright 2001 Numerical Algorithms Group.

*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf07.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, m, n, nrhs, pda,
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *b=0, *tau=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al[(J-1)*pda + I -

#define B(I,J) b[(J-1)*pdb + I -
order = Nag_ColMajor;

#else

#define A(I,J) al[(I-1)*pda + J -

#define B(I,J) b[(I-1)*pdb + J -
order = Nag_RowMajor;

#endif

INIT FAIL(fail);

and

pdb, tau_len;

—3.15
—0.11
1.99
—2.70
0.26
4.50

Vprintf ("nag_dgeqrf (f08aec) Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("sx["\n] ");

Vscanf ("$1d%1d%1d%*["\n] ", &m,
#ifdef NAG_COLUMN_MAJOR

pda = m;

pdb = m;
#else

pda = n;

pdb = nrhs;
#endif

tau_len = MIN(m,n);

/* Allocate memory */

if (!(a = NAG_ALLOC(m * n, double))
double

! (b = NAG_ALLOC(m * nrhs,
! (tau = NAG_ALLOC(tau_len,
{

&n, &nrhs);

[
))
double)

Vprintf ("Allocation failure\n");

exit_status = -1;
goto END;
}

f08aec.4

)

)

NAG C Library Manual

2.19
—3.64
0.57
8.23
—6.35
—1.48

[NP3660/8]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08aec

/* Read A and B from data file =*/
for (i = 1; 1 <= m; ++1)
{
for (j = 1; j <= n; ++3)
Vscanf ("$1f", &A(i,3));

}

Vscanf ("$*x[*\n] ");

for (i = 1; 1 <= m; ++1)
{

for (j = 1; j <= nrhs; ++3)
Vscanf ("$1f", &B(i,3));
3

Vscanf ("s*[*\n] ");

/* Compute the QR factorization of A */
/* nag_dgeqrf (f08aec).
* QR factorization of real general rectangular matrix
*/
nag_dgeqrf(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dgeqrf (f08aec).\n%s\n", fail.message) ;
exit_status = 1;
goto END;
}

/* Compute C = (Q**T)*B, storing the result in B */
/* nag_dormgr (f08agc).
* Apply orthogonal transformation determined by nag_dgeqrf
* (f08aec) or nag_dgegpf (f£08bec)
*
/
nag_dormqgr (order, Nag_LeftSide, Nag_Trans, m, nrhs, n, a, pda,
tau, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dormgr (£08agc).\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Compute least-squares solution by backsubstitution in R*X = C */
/* nag_dtrtrs (f07tec).

* Solution of real triangular system of linear equations,

* multiple right-hand sides

*

/
nag_dtrtrs(order, Nag_Upper, Nag NoTrans, Nag_NonUnitDiag, n, nrhs,

a, pda, b, pdb, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_dtrtrs (f07tec).\n%s\n", fail.message) ;
exit_status = 1;
goto END;
}

/* Print least-squares solution(s) */
/* nag_gen_real_mat_print (xO4cac).
* Print real general matrix (easy-to-use)
*
/
nag_gen_real _mat_print(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, nrhs, b,
pdb, "Least-squares solution(s)", 0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from nag_gen_real mat_print (x0O4cac).\n%s\n",
fail.message) ;
exit_status = 1;
goto END;
}
END:
if (a) NAG_FREE(a)
if (b) NAG_FREE(Db);
if (tau) NAG_FREE(tau);
return exit_status;

I

[NP3660/8] f08aec.5

f08aec

9.2 Program Data

nag_dgeqrf (f08aec)

6 4 2
-0.57 -1.28 =-0.39
-1.93 1.08 -0.31
2.30 0.24 0.40
-1.93 0.64 -0.66
0.15 0.30 0.15
-0.02 1.03 =-1.43
-3.15 2.19
-0.11 -3.04

1.99 0.57
-2.70 8.23

0.26 -6.35

4.50 -1.48

9.3 Program Results

nag_dgeqrf

(f08aec)

Example Program Data
:Values of M, N and NRHS
0.25
-2.14
-0.35
0.08
-2.13
0.50 :End of matrix A

:End of matrix B

Example Program Results

Least-squares solution(s)

DS w N

1
1.5146
1.8621

-1.4467
0.0396

2
1.5838
0.5536
1.3491
2.9600

NAG C Library Manual

f08aec.6 (last)

[NP3660/8]

	f08aec
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Arguments
	order
	m
	n
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT
	NE_INT_2
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

